定义
D_n = \begin{vmatrix}
1 & 1 & \dots & 1 & 1 \\
x_1 & x_2 & \dots & x_{n-1} & x_n \\
x_1^2 & x_2^2& \dots & x_{n-1}^2 & x_n^2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_1^{n} & x_2^n & \dots & x_{n-1}^n & x_n^n
\end{vmatrix}
计算
D_n = \prod_{1 \le j < i \le n}(x_i - x_j)
推导
使用数学归纳法,当n=2时:
D_2 = \begin{vmatrix}1 & 1 \\ x_1 & x_2\end{vmatrix} = x_2 - x_1 = \prod_{1 \le j < i \le n}(x_i - x_j)
当n > 2时:
从最后一行开始,到第二行为止,每一行减去上一行乘以x_1,得到